Current Issue : July - September Volume : 2011 Issue Number : 3 Articles : 4 Articles
This paper presents the results of an experimental investigation of two gesture representations (overlaying hands and cursor pointer) in a video-mediated scenarioââ?¬â?remote collaboration on physical task. Our study assessed the relative value of the two gesture representations with respect to their effectiveness in task performance, user's satisfaction, and user's perceived quality of collaboration in terms of the coordination and interaction with the remote partner. Our results show no clear difference between these two gesture representations in the effectiveness and user satisfaction. However, when considering the perceived quality of collaboration, the overlaying hands condition was statistically significantly higher than the pointer cursor condition. Our results seem to suggest that the value of a more expressive gesture representation is not so much a gain in performance but rather a gain in user's experience, more specifically in user's perceived quality of collaborative effort....
A novel full adder circuit is presented. The main aim is to reduce power delay product (PDP) in the presented full adder cell. A new method is used in order to design a full-swing full adder cell with low number of transistors. The proposed full adder is implemented in MOSFET-like carbon nanotube technology and the layout is provided based on standard 32?nm technology from MOSIS. The simulation results using HSPICE show that there are substantial improvements in both power and performance of the proposed circuit compared to the latest designs. In addition, the proposed circuit has been implemented in conventional 32?nm process to compare the benefits of using MOSFET-like carbon nanotubes in arithmetic circuits over conventional CMOS technology. The proposed circuit can be applied in very high performance and ultra-low-power applications....
Cellular response to both surface topography and surface chemistry has been studied for several years. However, most of the studies focus on only one of the two parameters and do not consider their possible synergistic effects. Here, we report on a fabrication method for nanostructured surfaces composed of highly ordered arrays of silica nanocones with gold tips. By using a combination of block copolymer nanolithography, electroless deposition, and reactive ion etching several parameters such as structure height and structure distance could easily be adjusted to the desired values. The gold tips allow for easy functionalization of the substrates through a thiol linker system. Improved neural cell adhesion can be obtained and is dependent on the nature of the nanocone surface, thus illustrating the influence of different surface topographies on the nanometer length scale, on a complex cellular behavior such as cell adhesion. Substrate and surface functionality are shown to last over several days, leading to the conclusion that the features of our substrates can also be used for longer term experiments. Finally, initial neural cell adhesion is found to be more prominent on substrates with short intercone distances, which is an important finding for research dealing with the reactions of neuron-like tissue in the immediate moments after direct contact with an implanted surface....
Controlled transport of microdroplets is a topic of interest for various applications. It is well known that liquid droplets move towards areas of minimum contact angle if placed on a flat solid surface exhibiting a gradient of contact angle. This effect can be utilised for droplet manipulation. In this contribution we describe how controlled droplet movement can be achieved by a surface pattern consisting of cones and funnels whose length scales are comparable to the droplet diameter.\r\nThe surface energy of a droplet attached to a cone in a symmetry-preserving way can be smaller than the surface energy of a freely floating droplet. If the value of the contact angle is fixed and lies within a certain interval, then droplets sitting initially on a cone can gain energy by moving to adjacent cones.\r\nSurfaces covered with cone-shaped protrusions or cavities may be devised for constructing ââ?¬Å?band-conveyorsââ?¬Â for droplets. In our approach, it is essentially the surface structure which is varied, not the contact angle. It may be speculated that suitably patterned surfaces are also utilised in biological surfaces where a large variety of ornamentations and surface structuring are often observed...
Loading....